
Efficient Evolutionary Algorithms for the
Clustering Problem in Directed Graphs

C. Rodrigo Dias
I.C. - Universidade Federal Fluminense

156 Rua Passo da Pátria, Bloco E, 3 andar
Niterói, RJ, Brasil 24210-240

cdias@ic.uff.br

Luiz S. Ochi
I.C. - Universidade Federal Fluminense

156 Rua Passo da Pátria, Bloco E, 3 andar
Niterói, RJ, Brasil 24210-240

satoru@dcc.ic.uff.br

Abstract- This paper presents improvements in the
performance of standard genetic algorithms (GAs) as
regards the solution of highly complex combinatorial
optimization problems. These improvements are
related to some modifications in the GA, including local
search and/or diversification procedures. The
performance of each proposed version is evaluated
through a graph partitioning problem. Extensive
computational experiments show that our evolutionary
algorithms outperform a genetic algorithm proposed in
the literature, by significantly improving the quality of
the final solutions with similar computational times.

1 Introduction

The clustering problem corresponds to the process of
grouping elements in a set so that the formed groups, or
clusters, represent a configuration in which each element is
more similar to any element from the same group than to
the elements from the other groups. There are several
applications for clustering in several research fields and it
has been exhaustively approached in the literature and,
more recently, it has been used in data mining (Berkhin
2002), biotechnology (Hartuv et al. 1999), software
engineering (Doval et al. 1999), and others.

There are several clustering techniques in the literature
and some are more suitable for certain types of
applications. Among the most explored techniques are the
hierarchical and partitioning methods.

In hierarchical clustering algorithms the clusters are
formed progressively by the grouping or disassociation of
elements or clusters, respectively, forming a cluster
hierarchy which is represented through a cluster tree. The
process of cluster formation is interrupted when the
number of wanted clusters is obtained (if this number has
been predefined) or in case any other stopping condition
happens. The lack of refinement in the grouping or
disassociation process usually gives a greedy character to
the traditional hierarchical method.

On the other hand, in the clustering algorithms that use
any partitioning method, the initial set of elements is
divided into several subsets and the obtained configuration
is evaluated. If the evaluation of the configuration
indicates that it does not solve the problem in question,
then a new configuration is obtained through the migration

of elements among the clusters and the process continues
in an iteractive way until some stopping criterion is
reached.

In the partitioning methods, the evaluation of all the
possible cluster configurations is computationally
unfeasible, thus limiting the exclusive use of exact methods
for its solution. Therefore, heuristics or approximated
methods have been frequently proposed and, more
recently, the use of evolutionary algorithms in the
application to clustering problems (Cole 1998; Chiun &
Lan 2001) has been growing, especially the genetic
algorithms (GAs). Although GAs are often used in the
literature in problems of combinatorial optimization, the
performance of these, in their traditional form, is worse
than other metaheuristics. With the aim of attempting to
improve the performance of GAs, different versions of a
traditional GA have been proposed.

Among the most used variations of GAs, we can
mention the proposals of adding new genetic operators and
new mechanisms for the creation of the initial population,
as well as for the selection process and the individuals'
reproduction. Therefore, a significant improvement in the
quality of the obtained solutions has been reached by the
evolution of the GAs (Drummond et al. 1997; Drummond
et al. 1998a; Drummond et al. 1998b; Ochi & Rocha 2000;
Ochi et al. 2001).

In that evolution, Glover (Glover 1977) introduced the
evolutionary approach entitled Scatter Search, which
presents similar and complementary characteristics to GAs,
and which has been shown to be promising in solving
optimization problems (Laguna 1999; Glover & Laguna
2000; Martí et al. 2002). In the Scatter Search approach,
the main idea is to work with a more deterministic version
of GAs, by using the idea of linear combination of good
solutions (élite solutions) obtained during algorithm
iterations. In another proposal of evolution of GAs,
Moscato (1989) introduced the memetic algorithms (MAs),
whose formal representation was presented by Radcliffe &
Surry (1994). In MAs, a local search is carried out in order
to be applied to the whole population or only to some
individuals alongside the algorithm iterations. Because of
the high cost of application of a local search to a great
number of individuals, MAs are better used when the local
search is occasionally applied to a small number of
individuals only, and in case the fitness function can be
decomposed. Thus, a small alteration in an individual
during the local search will not need to update the

individual's fitness as a whole, only in regard to the part
affected by the alteration.

Another variation of GAs, proposed by Lorena &
Furtado (2001), corresponds to the Constructive Genetic
Algorithms (CGA), which add new characteristics to the
traditional proposal of GA. Among the main aggregated
characteristics is the association of a rank to each
individual, bearing in mind that an individual can be
constituted of blocks of partial solutions or a complete
solution, and the use of a bi-objective fitness function,
which is used to evaluate the complete solutions and the
blocks of partial solutions that are called schemata.

A bottleneck of GAs is the required computational time
that is usually longer than the time required for other
heuristics. Some of the alternatives to reduce this limitation
is to gauge its parameters appropriately, like the size of the
population, or to work with parallel versions of GAs
(Drummond et al. 1997; Drummond et al. 1998a;
Drummond et al. 1998b; Ochi et al. 2001).

The main goal of this work is to present procedures so
as to obtain a more efficient GA. In order to achieve that, a
traditional GA, as proposed by Doval et. al. (1999) for
clustering in graphs, was initially implemented and then
different fittings were suggested and new modules to GA
were incorporated in an attempt to improve the obtained
solutions without a significant increase in the execution
time. The contribution of this paper is the investigation of
the extent to which an GA can be improved by alterations
that do not compromise its global acting.

This article is organized as follows: in Section 2 the
graph partitioning problem is described and the genetic
algorithm is presented, as proposed by Doval et. al. (1999).
In Section 3, the new proposals are described. Section 4
presents information about the implementation, the
obtained computational results and their analysis.
Conclusions and future proposals are presented in Section
5, followed by the bibliography.

2 Graph Partitioning

The clustering process applied to graphs is also reported in
the literature as graph partitioning problem. In this case,
the problem concerns the grouping of the nodes of a graph
in disjoint clusters, so that the nodes that are more strongly
connected are gathered in a same cluster, while the
connections among the nodes of different clusters are
minimized (Doval et al. 1999; Hartuv & Shamir 1999;
Maini et al. 1994). The clustering problem in graphs is a
NP-COMPLETE problem, what justifies the use of
heuristics, with special attention to GAs.

The traditional GA implemented in this work, and
referred to in this paper as basic GA (BGA), was proposed
by Doval et. al. (1999) in order to automatically obtain a
good partitioning (or clustering) of a module dependency
graph (MDG).

A MDG is a way used in software design to make
complex systems more comprehensible. It corresponds to a
directed graph where the modules of a system are

represented by the nodes, and the static dependencies
among the modules are represented by the edges of the
graph. In a MDG it is possible to have an edge connecting
a node to itself.

In contrast with most of the methods used for
clustering, in the proposed BGA it is not necessary to
previously specify the number of clusters into which the
MDG should be partitioned. The choice of the best number
of clusters is part of the process of the problem solution.
Therefore, this variant of the graph partitioning problem is
more complex than the models by which the number of
clusters is previously defined.

During the execution of BGA, each individual of the
population corresponds to a feasible solution, even with
different number of clusters in each of them. In order to
evaluate the quality of a solution corresponding to a
directed graph, the authors present a measure that takes the
several connections among the nodes of the graph into
consideration.

The measure, denominated modularization quality
(MQ), is used as the fitness function of the GA. The
objective of the GA is to find a good (possibly the best)
partitioning through the maximization of MQ, which is
defined as

=

>∀
∑

−∑
= −

==

1

1
2

)1(
1, ,1

kA

k
B

k
A

MQ

i

kk

k
ji ji

k
i i

where Ai is the intra-connectivity of cluster i, Bi,j is the
inter-connectivity between clusters i and j and k is the total
number of clusters of the solution.

The intra-connectivity Ai of a cluster i is a measure that
considers the total number of edges inside each one of the
clusters of the solution (density of the cluster), being
defined as

2
i

i
i N

A µ=

where µi is the total number of internal edges of the
cluster i and Ni is the total number of its nodes.

The inter-connectivity Bi,j between clusters i and j is a
measure that considers the total number of edges between
the pairs of clusters in a solution. Considering a couple of
clusters i and j, εij being the total edges from cluster i to
cluster j, Ni and Nj being the total nodes of clusters i and j,
respectively, the measure of inter-connectivity Bi,j of the
pair of clusters is given by

≠

=
= jiif

NN

jiif
B

ji

ijji

2

0

,
ε

The values of the intra-connectivity and inter-
connectivity vary between 0 and 1 and a good quality
clustering has a high value for the sum of the intra-
connectivity of all clusters and a low value for the sum of
the inter-connectivity of every possible pair of clusters.

The value of MQ corresponds to the difference between
the intra-connectivity average and the inter-connectivity
average and can vary between –1 and 1. The function MQ
rewards the accomplisment of clusters with high intra-
connectivity value and penalizes partitionings with many
dependencies among its clusters (high inter-connectivity
value), i.e., the higher the value of MQ, the better the
clustering.

As an example, Figure 1 indicates the value of MQ for
two different clusterings for a same graph with 8 nodes,
where clustering A is better than clustering B.

A: MQ = 0.3958 B: MQ = 0,0833

Figure 1: two different samples of clustering

The representation used in order to make possible to
associate each BGA individual to a solution for the
clustering problem is the encoding presented as group-
number in Cole (1998) .

In the group-number scheme, the clustering of n objects
is represented by an array of n integers where the ith
integer indicates the number of the group which holds the
ith element. Therefore, in the graph partitioning, an array
of integers with size n is used for each individual, where n
is the total number of nodes in the graph. Figure 2 shows
an individual representing a clustering solution for a graph
with 8 nodes.

Figure 2: an example of group-number encoding

In BGA, Doval et. al. (1999) propose that the number
of individuals from the populations alongside the
generations is kept, with a total number of 10 × n
individuals, where n is the total number of nodes of the
graph.

However, they only analyzed small graphs, with less
than 100 nodes. By using this approach, the size of the
population can become very large for graphs with a high
number of nodes, as in the case of nodes in the order of
hundreds or thousands.

Because of that, when implementing BGA in this work,
the size of the population was assumed as being [max{100,
n}], which empirically was showed to be a satisfactory

value, in comparison with the initial proposal. As specified
in the original BGA, the initial population is randomly
generated in this work, being possible to find individuals
that correspond to solutions with different number of
clusters.

After the generation of the initial population, the
evolutionary process begins, getting different individuals'
populations alongside the generations. Each generation
corresponds to an iteration of GA, when the selection and
reproduction steps of a population first take place so as to
generate a new population.

During the selection and reproduction of a population, n
individuals are chosen from the current population
according to their fitness values. The selection in BGA
uses the roulette method, complemented by elitism, the
latter being used in order to guarantee that the fittest
individual of the current population is selected for the next
one. These n selected individuals form the new population,
which will be used in the next iteration of the GA. In BGA,
Doval et. al. (1999) specify the total number of iterations
carried out as being 200 × n, where n is the number of
nodes of the graph. According to this definition, the
number of iterations increases a lot as the graph grows.
Because of that, in this work half of the proposal (100 × n)
was adopted - what has continued to produce satisfatory
results.

Even after adjusting the number of iterations, this
number can be high and the execution time can be long.
For that reason, we adopted a second stopping criteria,
which restricts the execution time of the algorithm to a
maximum of 4 hours.

In each generation, immediately after the selection and
reproduction, the crossover operator is applied to combine
pairs of individuals with the aim of obtaining new
individuals. Figure 3A presents an example of the
application of the crossover operator, where the
individuals use the group-number encoding.

The mutation operator is applied to each individual of
the population after the application of the crossover
operator. In the mutation operator, the value of each ith
element of the individual, with 1 ≤ i ≤ n, has the same
probability of being changed to a random value q, so that 1
≤ q ≤ n, i.e., the maximum number of clusters will be the
number of elements (i.e. nodes) of the related problem (i.e.
the graph). The rate of application of the mutation operator
is 0.004 × log2(n). An example of the mutation operator
is shown in Figure 3B.

A: B:

Figure 3: crossover (A) and mutation (B) operators

1

3

5

7

4

8

2

6
1

3

5

7

4

8

2

6

1

3

5

7

4

8

2

61 2 3 4 5 6 7 8
1 2 1 3 1 2 1 3

nodes

individual

1 2 1 3 1 2 1 3

2 1 1 1 3 2 2 3

1 2 1 1 3 2 2 3

2 1 1 3 1 2 1 3

1 2 1 3 1 2 1 3

1 2 1 3 7 2 1 3

3 Improving the Performance of BGA

The results obtained from the execution of BGA in
preliminary tests were shown to be unsatisfactory for
directed graphs with some dozens of nodes, what can be
observed in Section 4. Despite the unsatisfactory results of
BGA, it was verified that its MQ function allows a good
evaluation of the quality of a solution, even without a
previous definition of the amount of clusters in the
searched solution.

Based on the analysis of the behavior of BGA in this
preliminary battery of tests, it was possible to identify its
downside. Then, we propose alternatives to try to improve
the performance of the BGA as regards the quality of the
results obtained. The proposals consist in optimizing
parameters and developing new modules to be added to the
BGA.

The proposals are implemented in different versions of
BGA, and we can note the following: a calibration
mechanism in the number of clusters considered during the
mutation operator; the insertion of a local search
procedure; a routine to generate a new heterogeneous
population based on the information held in the best
solution found until the moment it is generated. Each of
the new proposed versions is described as follows:

Version 1 (GA1)

It corresponds to a version of the BGA with the
insertion of a local search procedure to be carried out in
each iteration after the application of the mutation operator
to the best individual of the population. The objective of
the local search procedure is to attempt to refine the best
individual in each generation, exchanging the nodes among
the clusters.

The process of exchanging the nodes is simple and
accomplished in each ith element of the array of the
solution, through the substitution of its value. In such
process each node is selected once and it is obtained the
cluster to which it shares the most number of edges. If the
obtained cluster is different from its current it is made an
evaluation of the individual considering the exchanging of
the node from the current cluster to the obtained cluster. If
this exchange improves the individual's fitness it is
accomplished, in other way, the node stays in its current
cluster.

Because of the nature of the proposed solution for the
partitioning graph problem, it is not possible to decompose
the fitness function and, therefore, to each exchange it is
necessary a new evaluation of the whole individual and not
just of the altered element. This demands a high
computational cost and, for this reason, the local search
procedure will just be applied to an individual of each
generation: the best one.

Version 2 (GA2)

This version is based on the GA1, with the introduction
of a way to calibrate the number of clusters of a solution
through the mutation operator. In order words, to each

generation, considering nc as the number of clusters of the
best solution obtained up to the current generation, the
random value q of the cluster obtained
for each selected element that will be altered in the
operator mutation will be obtained in the range
1 ≤ q ≤ (1.1 × nc).

The aim of this alteration is to allow a progressive
adjustment in the maximum number of clusters of the
solutions considered in each generation, which should
converge to the optimal number of clusters, while the local
search procedure is used to speed up this convergence.

Version 3 (GA3)

This version uses the local search procedure introduced
in GA1 and the calibration of the number of clusters in the
mutation process, introduced in GA2. However, in this
version a modification was accomplished in the local
search procedure. As it was exposed in GA1, to each
application of the local search procedure to an individual,
a node can be transposed from a cluster to another once
only and, at the end of the local search procedure, a new
clustering configuration can be achieved.

The proposal of GA3 is that, immediately after the
conversion of the nodes in a local search, and consequent
new clustering configuration, the local search procedure
should be re-applied to verify if new exchanges of nodes
among the clusters can get better solutions than that
obtained in the previous application of the local search
procedure.

In this new proposal, this re-application of the local
search procedure should happen while the obtained
solution improves. This process will be referred to from
now on as re-application of the local search procedure.

Version 4 (GA4)

That version uses the local search introduced in the
GA1 with the re-application proposed in the GA3, together
with a new proposal. This new proposal consists in
applying the local search procedure to the best individual
of this population after the ramdom generation of the
initial population.

 After that, a new population is generated by a
diversification module, in which the best solution obtained
up to the current generation (called global best) is
duplicated m times (where m is the size of the population)
and in each copy of the global best, we select one or more
windows where the size and the positions of these are
randomly chosen. Then, each element into the windows is
changed to values randomly selected. In the example of the
Figure 4, a population with five individuals is created with
copies of the global best, inserting random values in the
windows of random sizes and positions.

The aim of this procedure is to investigate an area of
search space close to the best individual obtained up to the
current iteration (called global best), though without losing
the stochastic character of the procedure. It is important to
mention that the other operators, namely crossing and
mutation, continue to be used in the way defined in BGA.

In the other iterations, whenever a new global best is
obtained, the diversification process is activated.

Figure 4: example of the diversification procedure

In GA4, the diversification procedure always uses the
fittest individual obtained after the execution of the local
search. In other words, even if in a given iteration the
global best is updated several times by the used operators
in the reproduction stage or during the local search, only at
the end of the iteration is the diversification activated (if it
is the case).

Version 5 (GA5)

This version has the same characteristics of the GA4,
including the diversification module, only differing in the
number of times that the diversification module can be
executed in each iteration of the algorithm.

As in GA4, the diversification module is activated once
after the generation of the initial population and once at
each update of the global best. Then, in GA4 the use of the
diversification module could obtain a better solution than
the global best, what is not considered because the next
step is to select the individuals of the obtained diversified
population for the next iteration, without updating the
global best again. GA5 was implemented in order to
consider that possibility, i.e., after the execution of the
diversification module in the update of the global best, the
obtained population will be evaluated again and the local
search will be applied to the best individual of the
population.

In case the best individual obtained by the last local
search is better than the global best, this will be updated
again and the diversification module will be re-activated.
This process will be repeated while the diversification
module, followed by the application of the local search,
update the global best.

This repetitive process will be referred to in this work
as diversification with repetition and it is worth observing
that it should not be considered as being an iteration of the
evolution of GA5.

Version 6 (GA6)

This version is based on GA4. However, an alteration
was accomplished in its mutation operator, introducing the
calibration mechanism in the estimated number of clusters
introduced in version GA2.

The aim of this alteration is to allow a gradual
adjustment in the maximum number of clusters of the
solutions considered in each generation, converging on the
optimal number of clusters. At the same time, the re-
application of the local search is used to accelerate this

convergence and the use of the diversification module
investigates an area of the search space.

Version 7 (GA7)

This version is based on the GA5, including the
calibration mechanism in the number of clusters introduced
in GA2, as performed in GA6.

Summary of the versions

Table 1 summarizes, in a comparative way, the
characteristics presented in this section, where a mark (X)
in the cell indicates that the respective module is
incorporated.

GA Versions
Procedures B 1 2 3 4 5 6 7

number of clusters calibration X X X X
local search X X X X X X X
local search with reapplication X X X X X
diversification X X X X
diversification with repetition X X

Table 1: versions of the implemented GA

4 Computational Results

Each version was run by using the same set of oriented
graphs as input and their computational results are
described in this section. All versions were implemented in
C and run in an Intel Pentium III 800MHz processor.

As instances of the partitioning problem for directed
graphs in public libraries were unknown, several classes of
directed graphs were artificially created for the evaluation
of the proposed algorithms, with different number of
nodes: 10, 20, 40, 60, 80, 100, 120, 150, 200 and 500
nodes. Two or more graphs were created for each amount
of nodes indicated above, with different formation
characteristics.

Due to the presence of random components in an GA,
each algorithm has been run three times with each graph,
thus reaching the average evaluation in each. Table 2
presents the total number of graphs used for each amount
of nodes, as well as the amount of accomplished tests,
totalling 66 tests.

 number of nodes 10 20 40 60 80 100 120 150 200 500

 distinct graphs 2 2 2 4 2 2 2 2 2 2

 tests in each graph 3 3 3 3 3 3 3 3 3 3

 TOTAL 6 6 6 12 6 6 6 6 6 6

Table 2: total number of accomplished tests

diversification1 1 1 3 2 2 1 3
global best

1 2 4 3 2 2 1 1

new population

1 1 3 5 1 5 1 3
2 7 3 3 2 3 4 3
1 1 2 5 2 2 1 3
1 1 1 3 2 5 5 2

indiv. 1
indiv. 2
indiv. 3
indiv. 4
indiv. 5

-

5 0 0

1 , 0 0 0

1 , 5 0 0

2 , 0 0 0

2 , 5 0 0

3 , 0 0 0

3 , 5 0 0

1 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 5 0 2 0 0

n u m b e r o f n o d e s i n t h e g r a p h

ru
nn

in
g

tim
e

(s
) B G A

G A 1
G A 2
G A 3
G A 4
G A 5
G A 6
G A 7

Figure 5: average running time of each version, considering each amount of nodes of the graphs

10
nodes

20
nodes

40
nodes

60
nodes

80
nodes

100
nodes

120
nodes

150
nodes

200
nodes

500
nodes

BGA 6 0 0 0 0 0 0 0 0 0
GA1 6 3 3 10 3 2 0 1 3 0
GA2 6 3 3 7 2 4 1 0 1 2
GA3 6 0 3 7 2 4 1 0 2 3
GA4 6 0 4 8 2 2 1 0 3 0
GA5 6 0 3 9 1 2 1 1 3 1
GA6 6 0 3 6 2 1 0 0 2 3
GA7 6 0 3 6 0 0 0 0 1 1

Table 3: number of best (G) obtained in each version

10
nodes

20
nodes

40
nodes

60
nodes

80
nodes

100
nodes

120
nodes

150
nodes

200
nodes

500
nodes

BGA 100.00% 94.07% 75.22% 71.69% 74.55% 67.73% 69.17% 71.22% 65.59% 61.56%
GA1 100.00% 99.84% 99.26% 99.74% 99.14% 99.00% 98.19% 99.07% 99.36% 74.92%
GA2 100.00% 99.84% 99.26% 99.31% 98.06% 99.35% 99.12% 98.36% 99.00% 98.58%
GA3 100.00% 99.08% 99.26% 99.36% 98.94% 99.49% 99.02% 97.17% 98.96% 98.78%
GA4 100.00% 99.39% 99.51% 99.62% 99.05% 98.83% 98.50% 97.51% 99.36% 75.07%
GA5 100.00% 99.39% 99.26% 99.86% 98.41% 98.71% 98.64% 98.28% 99.33% 75.87%
GA6 100.00% 99.39% 99.26% 98.60% 98.70% 97.71% 98.51% 97.48% 99.20% 98.41%
GA7 100.00% 99.39% 99.26% 99.14% 98.01% 97.44% 97.29% 97.51% 98.78% 98.02%

Table 4: average percentage value from the best solution of all versions for each size of graph

For all the graphs used, except for the graphs with 500
nodes, the versions of GA have executed all the iterations.
The total number of iterations for each execution, as
exposed in the Section 2, corresponds to 100 × n, where n
is the number of nodes in the graph. For the graphs with
500 nodes, the execution of each GA was interrupted when
completing 4 hours, with an average of 2,200 iterations out
of 50,000 iterations. The average execution time for each
version, excluding the graphs of 500 nodes, is presented in
Figure 5.

In Figure 5 it can be noted that the running time of
BGA and the other seven versions proposed here are very
similar: the use of additional modules does not necessarily
imply a significant increase in the time, since the presence
of these modules not only can provide improvement in the
quality of the solutions, but also can reduce the space of
search of these heuristics. The calibration in the number of
clusters significantly reduces the running time of the local
search, apart from reducing the total number of
conversions of the nodes among clusters.

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

10 20 40 60 80 100 120 150 200 500

BGA
GA1
GA2
GA3
GA4
GA5
GA6
GA7

Figure 6: chart regarding Table 4

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

10 20 40 60 80 100 120 150 200 500

GA1
GA2
GA3
GA4
GA5
GA6
GA7

Figure 7: reduction of the scale of the graph in Figure 6, to exhibit details from GA1 to GA7

We will denote as best(G) the best solution obtained by
the execution of all the different versions for each graph G.
Table 3 indicates the number of times that each version
obtained the solution best(G). Table 4 presents the average
percentage value of the best(G) fitness value for all
versions for each size of graph. For example, the value
100% means that the average fitness value of the solution
obtained by the respective version using a graph G was the
same value as that of the best(G).

It is important to note that even those tests that did not
reach the solution best(G), were close to it almost all the
times, as illustrated in Table 4 and Figures 6 and 7.

Based on Figures 6 and 7 and Tables 3 and 4, we can
conclude that:

• All the seven versions here proposed, unlike GA in the
literature (BGA), produced average fitness value of
the final solutions at a maximum of 3% of the fitness
value of best(G) for all the graphs G analyzed with up
to 200 nodes.

• We observed, however, that some algorithms analyzed
here can strongly depend on the type of graph used.
This was confirmed through the accomplished tests, in

which some versions performed much better than the
others for certain graphs used. Therefore, we observed
that the versions GA2, GA6 and GA7 were the ones
that showed to be more robust with average fitness
value at a maximum of 2,6% of the best(G) values for
all the types and sizes of graphs G considered (see
Table 4).

• Besides this result, the versions GA2, GA3, GA6 and
GA7 produced average solutions at a maximum of 2%
of the best(G) for all the graphs G with 200 and 500
nodes. For problems of higher loaded graph
partitioning we believe that GA6 and GA7 tend to be
the best candidates, with a more efficient search,
because of their behavior in the accoplished tests.

5 Conclusions

In this work the main objective was to analyse the
behavior of different versions of evolutionary algorithms
based on populations of solutions. In order to achieve this,
different versions of genetic algorithms were developed,

from a basic one to versions including control mechanisms
in the clusters number, local search modules and
mechanisms of diversification for a population of
solutions.

The computational tests showed that there is an
evolution of the algorithms in so far as these proposals are
included in the BGA. Another important result was to
verify that the versions with the combination of the
proposals procedures had good performance in instances
of great load (over 200 nodes).

As regards suggestions for future work, we are
beginning to carry out research whose objective is to
develop cooperative and adaptative evolutionary
algorithms and whose main characteristic is to take
advantage of the conclusions of this work so as to obtain
more consistent algorithms with stable average
performance in all types of input graphs. Another work to
be initiated will be the accomplishment of parallel versions
of the presented algorithms, not only to reduce the
computational time demanded by the sequencial versions,
but also to take advantage of the communication among
processors in order to attempt to improve the quality of the
generated solutions.

Bibliography

Berkhin, P. 2002. Survey of Clustering Data Mining
Techniques. Accrue Software.

Chiun, Y. and Lan, L.W. 2001. “Genetic Clustering
Algorithms”. European Journal Of Operational
Research (135) 2, pp. 413-427.

Cole, R.M. 1998. “Clustering with Genetic Algorithms”.
Master’s thesis, Dept. of Computer Science, Univ. of
Western Australia.

Doval, D., Mancoridis, S. and Mitchell, B.S. 1999.
“Automatic Clustering of Software Systems using a
Genetic Algorithm”. In Proceedings of the 1999 Int.
Conf. on Software Tools and Engineering Practice
(STEP '99).

Drummond, L.M.A., Ochi, L.S. and Figueiredo, R.M.V.
1997. “Design and Implementation of a Parallel
Genetic Algorithm for the Travelling Purchaser
Problem”. In Applied Computing/ACM, pp. 257-263.

Drummond, L.M.A., Vianna, D.S. and Ochi, L.S. 1998.
“Genetic Algorithm for the Vehicle Routing
Problem”. In Future Generations on Computer
Systems, Elsevier, vol. 14(5-6), pp. 285-292.

Drummond, L.M.A., Vianna, D.S. and Ochi, L.S. 1998.
“An evolutionary hybrid metaheuristic for solving the
vehicle routing problem with heterogeneous fleet”. In
Lecture Notes in Computer Science, Springer Verlag,
vol. 1391, pp. 187-195.

Glover, F. 1997. “Heuristics for Integer Programming
Using Surrogate Constraints”. Decision Sciences, vol.
8, no. 7, pp. 156-166.

Glover, F. and Laguna, M. 2000. “Fundamentals of Scatter
Search and Path Relinking”. Control and
Cybernetics, vol. 29, no. 3, pp. 653-684.

Hartuv, E., Schmitt, A., Lang, J. et al. 1999. “An
Algorithm for Clustering for Gene Expression
Analysis”. In Proceedings of Third Annual
International Conference on Computational
Molecular Biology (RECOMB ’99).

Hartuv, E. and Shamir, R. 1999. “A Clustering Algorithm
based on Graph Connectivity”. Technical Report, Tel
Aviv University, Dept. of Computer Science.

Laguna, M. 2002. “Scatter Search”. In Handbook of
Applied Optimization, P. M. Pardalos and M. G. C.
Resende (Eds.), Oxford University Press, pp. 183-
193.

Lorena, L.A.N. and Furtado, J.C. 2001. “Constructive
Genetic Algorithm for Clustering Problems”.
Evolutionary Computation, vol. 9, no. 3, pp. 309-
327.

Maini, H.S., Mehrotra, K.G., Mohan, C.K. and Ranka, S.
1994. “Genetic Algorithms for Graph Partitioning
and Incremental Graph Partitioning”. In Proceedings
of the 1994 Conference on Supercomputing, pp. 449-
457.

Martí, R., Laguna, M. and Campos, V. 2002. “Scatter
Search vs. Genetic Algorithms”. Technical Report,
University of Colorado at Boulder.

Moscato, P. 1989. “On Evolution, Search, Optimization,
Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms”. Technical Report, Caltech
Concurrent Computation Program, California
Institute of Technology.

Ochi, L.S. and Rocha, M.L. 2000. “A new hybrid
evolutionary algorithm for the vehicle routing and
scheduling problems”. In Proceedings of the Ninth
International Conference on Intelligence Systems:
Artificial Intelligence Applications for the New
Millennium, pp. 135-140.

Ochi, L.S., Vianna, D.S. and Drummond, L.M.A. 2001.
“An asynchronous parallel metaheuristic for the
period vehicle routing problem”. In Future
Generations Computer Systems, Elsevier, vol. 17, pp.
379-386.

Radcliffe, N.J. and Surry, P.D. 1994. “Formal Memetic
Algorithms”. In T. Fogarty, editor, Evolutionary
Computing AISB Workshop, volume 865 of Lecture
Notes in Computer Science, pp. 1-16, Springer-
Verlag.

